skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Potter, Kevin M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract There are twenty experimental forest and range sites (EFRs) across the southeastern United States that are currently maintained by the USDA Forest Service (Forest Service) to conduct forest ecosystem research for addressing ecosystem management challenges. The overall objective of this study was to use multiple gridded datasets to assess the extent to which the twenty EFRs represent the climate, ecosystem structure, and ecosystem functions of southeastern forests. The EFRs represent the large variability of climate conditions across the region relatively well, but we identified small representation gaps. The representativeness of ecosystem structure by these EFRs can be improved by establishing EFRs in forests with relatively low tree cover, leaf area index, or tree canopy height. The current EFRs also represent the forest ecosystem functions of the region relatively well, although areas with intermediate and low aboveground biomass and water yield are not well represented. The trends in climate, ecosystem structure, and ecosystem functions were generally consistent between the region and the EFRs. Our study indicates that the current EFRs represent the region relatively well, but establishing additional EFRs in specific areas within the region could help more completely assess how southeastern forests respond to climate change, disturbance, and management practices. Study Implications: This study across the experimental forests and ranges (EFRs) and the southeastern forest region fills the knowledge gap regarding climate, ecosystem structure, and ecosystem functions of EFRs in the context of the broader southeastern forest region. Understanding ecosystem functions and structures across the EFR network can help the Southern Research Station to address new research questions. Our study indicates that the current EFRs represent the climate, ecosystem structure, and ecosystem functions of southeastern forests well. However, establishing additional EFRs in certain regions could help more completely assess how southeastern forests respond to climate change, disturbance, and management practices. 
    more » « less
  2. The physical structure of vegetation is thought to be closely related to ecosystem function, but little is known of its pertinence across geographic regions. Here, we used data from over three million trees in continental North America to evaluate structural diversity – the volumetric capacity and physical arrangement of biotic components in ecosystems – as a predictor of productivity. We show that structural diversity is a robust predictor of forest productivity and consistently outperforms the traditional measure – species diversity – across climate conditions in North America. Moreover, structural diversity appears to be a better surrogate of niche occupancy because it captures variation in size that can be used to measure realized niche space. Structural diversity offers an easily measured metric to direct restoration and management decision making to maximize ecosystem productivity and carbon sequestration. 
    more » « less
  3. Nonnative pests often cause cascading ecological impacts, leading to detrimental socioeconomic consequences; however, how plant diversity may influence insect and disease invasions remains unclear. High species diversity in host communities may promote pest invasions by providing more niches (i.e., facilitation), but it can also diminish invasion success because low host dominance may make it more difficult for pests to establish (i.e., dilution). Most studies to date have focused on small-scale, experimental, or individual pest/disease species, while large-scale empirical studies, especially in natural ecosystems, are extremely rare. Using subcontinental-level data, we examined the role of tree diversity on pest invasion across the conterminous United States and found that the tree-pest diversity relationships are hump-shaped. Pest diversity increases with tree diversity at low tree diversity (because of facilitation or amplification) and is reduced at higher tree diversity (as a result of dilution). Thus, tree diversity likely regulates forest pest invasion through both facilitation and dilution that operate simultaneously, but their relative strengths vary with overall diversity. Our findings suggest the role of native species diversity in regulating nonnative pest invasions. 
    more » « less
  4. Ecological communities often exhibit greater resistance to biological invasions when these communities consist of species that are not closely related. The effective size of this resistance, however, varies geographically. Here we investigate the drivers of this heterogeneity in the context of known contributions of native trees to the resistance of forests in the eastern United States of America to plant invasions. Using 42,626 spatially referenced forest community observations, we quantified spatial heterogeneity in relationships between evolutionary relatedness amongst native trees and both invasive plant species richness and cover. We then modelled the variability amongst the 91 ecological sections of our study area in the slopes of these relationships in response to three factors known to affect invasion and evolutionary relationships –environmental harshness (as estimated via tree height), relative tree density and environmental variability. Invasive species richness and cover declined in plots having less evolutionarily related native trees. The degree to which they did, however, varied considerably amongst ecological sections. This variability was explained by an ecological section’s mean maximum tree height and, to a lesser degree, SD in maximum tree height ( R 2 GLMM = 0.47 to 0.63). In general, less evolutionarily related native tree communities better resisted overall plant invasions in less harsh forests and in forests where the degree of harshness was more homogenous. These findings can guide future investigations aimed at identifying the mechanisms by which evolutionary relatedness of native species affects exotic species invasions and the environmental conditions under which these effects are most pronounced. 
    more » « less